- 7 NASAwTT«»F-lO{,‘986 ,

g

? A MULTIMODULUS ELASTICITY THEORY “1_,

(/ S. A. Ambartsumyan and A. A. Khachatryan :}7/

NASA TT F-10,986

GPO PRICE $

CFSTI PRICE(S) $

Has . copy (HC) 5, OO0

Microfiche (MF) _ﬁ:
|

ff 653 July 65

W]
Translati of Kcv\v:aznomodul'noy teorii
uprugos??‘. MeRhanika Tverdogo Tela,
o. 6, pp. 64-67, 1966.

"B

o8

9 Y

i (THRL)

]

[ 3

E (PAGESS '

5 (copef

o ?

R &
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546 MAY 1967



NASA TT F-10,986
A MULTIMODULUS ELASTICITY THEORY

S. A. Ambartsumyan and A. A. Khachatryan

This paper considers certain questions regarding the ap- 164%
plication of elasticity theory to bodies whose materials re-
sist extension and compression in different ways. Some for-
mulas and theorems of the classical theory of elasticity are
presented and their validity is demonstrated for the consid-
ered material.

1. The multimodulus theory of elasticity for isotropic elastic materials
with the elastic characteristics ET and vt (upon extension in any direction)
and ET and v~ (upon compression in any direction), as is known [1, 2], differs
from the classical elasticity theory only by the law of elasticity applied. 1In
the multimodulus theory of elasticity, the generalized law of elasticity in a
rectangular system of coordinates x, y, z has the following form [1, 2]:

Bxx = G110z} G12 (6 + ;) + Bams  exy = 24Ty A 2Bymamasy
eyy = G0y + 13 (G2 + 6;) + Bamo®op  €xz = 24iTxz + 2Bamimasy (1.1)
€22 = @S, + M3 (0x + 0,) + Bama®sp €z = 241Tyz -+ 2Bymamssy

where, along with the known designations [3], we also have

Ay = ay—an  By=an—ay | (1.2)
my = cos (z;'B), my=cos(y, B), ms=cos(z B) (1.3)

Here B is one of the principal directions of the stresses and strains at a
given point; OB is the principal stress which corresponds to the principal di-

rection f; mi are the direction cosines.

In order to make the following discussion more specific, the generalized
law of elasticity (1.1) is written for a case when the principal direction og

has a sign which is different from that of the other two principal stresses o
and UY, i.e., when og < 0, g, > 0, and 0 > 0, due to which we have a, = 1/E+,
a5y = 1/E-, a, . = —v+ﬁﬁ'= —~/E~ for the elasticity factors a,

12 ik

o, OY < 0, Oa < 0, due to which we have a, = 1/E™, a,, = 1/Et, and a, = -vt/Et

; or when 0, >

= —y—/E- for a-

*Numbers in the margin indicate pagination in the foreign text.
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Solving system (l.1) with respect to the stresses, we obtain

= 2Aey + BO— B3 (B + 2Am®)6;, Tay = A(exy — 2BymimsSy) !
= 2A€w + Bo — Ba (B + ZAMQ )65, Txz = 4 (e;_tz - 2Bam1m365) . (1. 4)
= 2Aezz + B8 — B3 (B + 2Am32) 6g, Tz = A(ey; — 2Bsm2m365) :

4 —— = g + '
A =94 B— Ay (an + 2a12) ' 0 = exx 1 ey + €z . (1.5)
We obtain the following for OB in strains by direct calculation [1]:
2Aeg, + BO ‘
O = T X B,2AFB) (1.6)

The generalized law of elasticity (1.1) is easily expressed in the princi-
pal directions of stresses and strains o, B,

Caq = auc, —+ a1a (GB - 5\')
eps = G230p + G2 (Gx -+ Sv) (1.7)
eyy = 4115y + an (62 + d8)

The relative position of the principal directions o, B, Yy with respect to /65
the coordinate axes x, y, z at a given point are determined by means of nine di-
rection cosines (see diagram) which are related by the following dependences*

& ﬁ v ;
Thmim P4mitad=1 @=1,23) (1.8)
f: :::: :: S lmysdgma + Ism; =0 amw .

We shall present known formulas for the transformation of the stress and
strain components at a given point in the transition from one coordinate system

to another, related by diagram (1.8), under the condition that a, B, and Y are
the principal directions of the stresses and strains:

for the strain components

exx = l1%eqn -+ Mi%epp -+ Nieyy (w2, 123)

1.9
ve = 2 (lalseaq + Mamaepg -+ Nanseyy) ( )

*The symbol (Auv) denotes that other relationships are obtained by cyclic

permutation of Auv. [Translator's note: Probably the (lmn) in (1.8) is inten-
ded.]
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or /
8aa = li%xx - L0y + 3%, + halseys + lilses, + Ly (v, "’“‘)‘_/

epy = 2 (MyMexs ++ MaTizeyy + M3Nslsy) + (’({s:na + ma(lz) ey: -+ (1.10)
+ (mang -+ mgna) exz + (Mans + Mathy) €4y = 0 7

for the stress components

0= Li¥ge F M2, + 1oy (auz, 1) |

Yo = Lloe & MMysy +nungs, | (1.11)

or .

Gy = llzcx + lgzdy <+ lazd‘ -+ 2 (Igl;‘t'w -+ llla"xz + lll27xu) (xpy, Imn)

Tay = MyN10x + MaNaSy + MangS; + (Mang -+ Mala) Ty -+~ (1.12)
4 (mans -+ many) Ty + (Mang - mgnl) Ty =0

As we know [3], for stress components, and also strain components, there
exist invariants which do not depend on the transformation of the coordinate
axes. Along with the known invariants, we shall present one more relationship
which contains components both of stress and of strain, and which also is in-
variant with respect to the transformation of the coordinate axis”.

:i" i;‘yzeuz (1.13)

I = 62t -+ Sy + Guaz + T

We shall call this invariant a mixed invariant.

2. Proceeding from the existence of an elastic potential for the multimod-
ulus body which we are considering, and also taking into account the linear re-
lationships (1.7), the following can be obtained for the specific potential en-
ergy of strain [3]:

W =1%/3 (Gafea + G3€33 + Orexv) (2.1)

Considering expression (2.1) and taking into account the mixed invariant
(1.13), let us note that the specific potential energy of strain in the coordi-
nate system x, y, z is expressed by the formula:

W =42 (6e8ux + 0400 + iz + Tty + Toair + Tysya) | (2.2)

Thus, this formula, which is known in the theory of elasticity as the /6
Clapeyron formula, also applies for the considered body.

*We shall not prove the invariancy of expression (1.13) in view of the ele-
mentary character and clumsiness of the derivations.



Substituting the values for the strains from (1.1) into (2.2), we obtain
the following after certain transformations for W in stresses:

‘&Em(dx +5v +°z’)+‘l!(°&5fy+5xaz+5ucz)+‘

o aﬂ) (txy + 't:u + 1’2) -+ / 2 (aea - all) 63 I‘\

(2.3)

Using the law of elasticity (1.4) and formula (1.6), the elastic potential
(2.2) can be represented by the strain:

(2A + By (ﬁxx ‘g@: + e:2) + B (0wt

| (2degg+ DO (2.4)
+’§‘A(ex "sz+¢m)""§’$"§"§.3‘25(__z',4_“7 \

3. It has been proven in the classical theory of elasticity that if the
internal elastic forces have a potential, then, independently of the law of
elasticity, the following Green formulas apply:

O g T <=wz>\ (3.1)
aexx . Y *

It has also been proven that if an elastic body is governed by the genera-
lized Hooke law, Castigliano formulas also apply for it:

oW W

Cxx = 36: 1 xy —

), (3.2)

0Tyy

We shall now prove that Castigliano formulas also apply for the multimodu-
lus material we are considering, which is characterized by the generalized law
of elasticity (1.1) or (1.4) [2].

To do this, we shall calculate the partial derivative of W with respect to

0, and shall indicate that it is equal to e On the basis of (2.3),we obtain:

ﬂ%a115:+a12(5y+52)+%§ (3.3)

Comparing (3.3) with the first relationship (1.1), we note that in order
to prove our statement it is necessary to indicate that

90 [ 805 = m? (3.4)



N

Having calculated the partial derivative of OS (1.12) with respect to O ,
we obtain *

i1 T oo

Z:x ml +2[m1.ai1.cz+ﬂ¥. %Uvﬁ-ra Bos 5;+ (3.5)
el 55 8 Wt (a2 ma ) 5]

We shall now indicate that the expression enclosed in the brackets in for-
mula (3.5) is equal to zero.

To do this, we differentiate the identity
24 m?t mde=1 (3.6)

with respect to GX and, on the basis of (1.8), we shall examine the following

linear homogeneous system with respect to my, m,, and m3:

dmy dms
m1gg:'F 233 +-m33—-_-0

s : (3.7)
myg - mgn, + mgng = 0, myly + myly + myly = 0

It is evident from (3.6) that my, m,, and my cannot be equal to zero at

the same time. Therefore, to satisfy system (3.7) it is sufficient that /6

wg Omy/05, 6m;/66x

- anciy
} f: ) r;z la

=ﬂ (3.8)

Since the last lines of the determinant (3.8), which are composed of the
direction cosines of directions o and vy, cannot be proportional, the following
is sufficient for the satisfaction of (3.8):

either ami/ 90, = anmy, or 8m; /80, = bly © (i=123) (3.9)

Here a and b are the proportionality factors. Let us note that in a gener-
al case a linear combination of the following form may apply:

om; / 8a; = an; + bl (i=1,2,3)



However, the statements already presented essentially remain in force.
Now let us note that when the first (second) condition of (3.9) is fulfilled,
the expression enclosed in brackets in (3.5) becomes equal to zero due to for-
mulas (1.12), where TBY =0 (TaB = 0). Thus, the validity of formula (3.4) is

proven.

Proceeding 1.~ a similar manner, the following group of formulas can be ob-
tained:

as 563 365 363'

8 _ 2 — 2 P
ds, m; * o6y m2 ' s, ms", 9Ty 2mymy 10
v a3 (3.10)
N Fm. szma,‘ 5ty

The validity of Castigliano's formulas (3.2) becomes evident for the considered
multimodulus material on the basis of these formulas.

4. On the basis of the Green (3.1) and the Castigliano (3.2) formulas,
the Clapeyron formula (2.2) can be represented in two ways: e.g.,

ow
O0exn

ow 14 W
€xx + aellll e’!lll + aezz €z + acx -ﬂl + ae exz + eﬁ bd 2W (4.1)

0W x+ 36 + cz + o,‘ 'Fam‘i' a.r Tﬂ-‘&%mvﬁazw (4.2)

The specific potential energy W can be considered in general as a function
of only the stress components Gx’ ceey T . or only of the strain components ey
y

«+»y € , since it is known that the principal stresses, (Ga, GB, Gy), or the
yz '
principal strains, (eaa, eBB’ eYY), and their direction cosines for the given

stress or strain components, are determined by a single value. On the strength
of this and on the basis of Euler's inverse theorem concerning heterogeneous
functions [4], from (4.1) and (4.2) we can conclude that if we succeed in ex-
pressing W, (2.3) or (2.4) only by stresses Gx, ceey Tyz or only by strains e X’

cees eyz’ in the multimodulus theory of elasticity it will also be a homogeneous

second-order function of its arguments.

5. Using the results presented above and proceeding in precisely the same
manner as in the classical theory of elasticity [3], we can prove the validity
of Clapeyron's theorem, and also the variation equations of Lagrange and
Castigliano for the multimodulus materials which we are considering.
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